Thermally ‘smart’ characteristics of nanofluids in parallel microchannel systems to mitigate hot spots in MEMS
نویسندگان
چکیده
Mitigation of ‘hot spots’ in MEMS employing in–situ microchannel systems requires a comprehensive picture of the maldistribution of the working fluid and uniformity of cooling within the same. In this article, detailed simulations employing parallel micro channel systems with specialized manifold-channel configurations i.e. U, I and Z have been performed. EulerianLagrangian Discrete Phase Model (DPM) and Effective Property Model (EPM) with water and alumina-water nanofluid as working fluids have been employed. The distributions of the dispersed particulate phase and continuous phase have been observed to be, in general, different from the flow distribution and this has been found to be strongly dependent on the flow configuration. Accordingly, detailed discussions on the mechanisms governing such particle distribution patterns have been proposed. Particle maldistribution has been conclusively shown to be influenced by various migration and diffusive phenomena like Stokesian drag, Brownian motion, thermophoretic drift, etc. To understand the uniformity of cooling within the device, which is of importance in real time scenario, an appropriate figure of merit has been proposed. It
منابع مشابه
Numerical study of natural convection heat transfer of Al2 O3/Water nanofluid in a Γ-shaped microchannel
Finite-volume procedure is presented for solving the natural convection of the laminar nanofluid flow in a Γ shaped microchannel in this article. Modified Navier-Stokes equations for nanofluids are the basic equations for this problem. Slip flow region, including the effects of velocity slip and temperature jump at the wall, are the main characteristics of flow in the slip flow region. Steady ...
متن کاملInvestigation of the Effect of Geometry and Type of Nanofluids on the Heat Transfer Inside the Microchannel using Computational Fluid Dynamics (CFD)
The purpose of this article is the numerical study of flow and heat transfer characteristics of Nanofluids inside a cylindrical microchannel with rectangular, triangular, and circular cross-sections. The size and shape of these sections have a significant impact on the thermal and hydraulic performance of the microchannel heat exchanger. The Nanofluids used in this work include water and De-Eth...
متن کاملThe Effect of Viscous Dissipation and Variable Properties on Nanofluids Flow in Two Dimensional Microchannels
Laminar two dimensional forced convective heat transfer of Al2O3 –water nanofluid in a horizontal microchannel has been studied numerically, considering axial conduction, viscous dissipation and variable properties effects. The existing criteria in the literature for considering viscous dissipation in energy equation are compared for different cases and the most proper one is applied for the re...
متن کاملAccurate characteristics of Helium in nano-channels
This article describes an accurate subPico flowmeter bifurcatedin to liquid and gas flowrates less than 1mol/s for both MEMS/NEMS and cryogenic technology applications. The MEMS/NEMS are described as either two Gauges (instrument), or quartz fluctuating forks, even if the liquid or gas flows through an element, as well as cryogenic technology consisting of arrays of e...
متن کاملAccurate characteristics of Helium in nano-channels
This article describes an accurate subPico flowmeter bifurcatedin to liquid and gas flowrates less than 1mol/s for both MEMS/NEMS and cryogenic technology applications. The MEMS/NEMS are described as either two Gauges (instrument), or quartz fluctuating forks, even if the liquid or gas flows through an element, as well as cryogenic technology consisting of arrays of e...
متن کامل